The plates of a parallel plate capacitor are charged up to $100 \,volt$ . A $2 \,mm$ thick plate is  inserted between the plates, then to maintain the same potential difference, the distance  between the capacitor plates is increased by $1.6\, mm$. The dielectric constant of the plate  is :-

  • A

    $5$

  • B

    $1.25$

  • C

    $4$

  • D

    $2.5$

Similar Questions

A parallel plate capacitor is formed by two plates each of area $30 \pi\, cm ^{2}$ separated by $1\, mm$. A material of dielectric strength $3.6 \times 10^{7} \,Vm ^{-1}$ is filled between the plates. If the maximum charge that can be stored on the capacitor without causing any dielectric breakdown is $7 \times 10^{-6}\, C$, the value of dielectric constant of the material is

$\left\{ Use : \frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} Nm ^{2} C ^{-2}\right\}$

  • [JEE MAIN 2022]

A parallel plate capacitor with plate area $A$ and plate separation $d$ is filled with a dielectric material of dielectric constant $K =4$. The thickness of the dielectric material is $x$, where $x < d$.

Let $C_1$ and $C_2$ be the capacitance of the system for $x =\frac{1}{3} d$ and $x =\frac{2 d }{3}$, respectively. If $C _1=2 \mu F$ the value of $C _2$ is $........... \mu F$

  • [JEE MAIN 2023]

In a parallel plate capacitor the separation between the plates is $3\,mm$ with air between them. Now a $1\,mm$ thick layer of a material of dielectric constant $2$ is introduced between the plates due to which the capacity increases. In order to bring its capacity to the original value the separation between the plates must be made......$mm$

A parallel plate capacitor has a dielectric slab of dielectric constant $K$ between its plates that covers $1 / 3$ of the area of its plates, as shown in the figure. The total capacitance of the capacitor is $C$ while that of the portion with dielectric in between is $C _1$. When the capacitor is charged, the plate area covered by the dielectric gets charge $Q_1$ and the rest of the area gets charge $Q_2$. Choose the correct option/options, igonoring edge effects.

$(A)$ $\frac{E_1}{E_2}=1$ $(B)$ $\frac{E_1}{E_2}=\frac{1}{K}$ $(C)$ $\frac{Q_1}{Q_2}=\frac{3}{K}$ $(D)$ $\frac{ C }{ C _1}=\frac{2+ K }{ K }$

  • [IIT 2014]

A capacitor has some dielectric between its plates and the capacitor is connected to a $\mathrm{D.C.}$ source. The battery is now disconnected and then the dielectric is removed. State whether the capacitance, the energy stored in it, electric field, charge stored and the voltage will increase, decrease or remain constant.